Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plastic deformation of III-V semiconductors under concentrated load

Identifieur interne : 00CD76 ( Main/Repository ); précédent : 00CD75; suivant : 00CD77

Plastic deformation of III-V semiconductors under concentrated load

Auteurs : RBID : Pascal:05-0011305

Descripteurs français

English descriptors

Abstract

The paper reviews the plastic behaviour of III-V semiconductors under concentrated load and its implication for optoelectronic-device design. We consider first, fundamental aspects involved into the mechanical resistance to contact loading of semiconductor single crystals (elastic-plastic transition, strain field, hardness-yield relationship...). The paper then describes recent studies of applications aimed at improving the heterostructure quality used in optoelectronic applications and emphasizes the so-called mechanical design (alloying and compliant substructure). Semiconductor technology offers model materials with high crystalline quality while its demand for improving heterostructure quality is a challenge to the Materials Science community. The elastic-plastic transition and subsequent plastic flow under contact loading is complex and has been widely investigated. This is reviewed integrating most recent works made using instrumental nano-indentation that allows monitoring the penetration of a diamond tip as a function of the applied load. Furthermore, this technique allows deformation in the micro- and milli-newton regime so that fracture can be avoided and the first steps of plastic deformation can be investigated. In particular, the determination of the plastic onset and hence the yield strength is possible by investigating the transition between elastic and elastic-plastic regime and measuring the plastic zone size as a function of the applied load. Results for various III-V semiconductors are reported. On the other hand, the performance of heterostructures is directly dependent on the density of dislocations that relax the lattice mismatch between- the substrate and the layers. Nano-indentation allows for a better understanding of the plastic deformations in such structures and opens practical routes to improve the devices. For instance, to avoid the generation of threading dislocations, compliant substructures are now developed in order to concentrate the plastic relaxation underneath the heterostructure. Nano-indentation tests on such structures are reported and the results show that the yield strength of the substrate can be reduced using a compliant substructure. In fact, mechanical design of optoelectronic devices should be considered throughout the fabrication process.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0011305

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Plastic deformation of III-V semiconductors under concentrated load</title>
<author>
<name sortKey="Le Bourhis, E" uniqKey="Le Bourhis E">E. Le Bourhis</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Université de Poitiers, Laboratoire de Métallurgie Physique, UMR 6630 CNRS, SP2MI-Téléport 2-Bd Marie et Pierre Curie, BP 30179</s1>
<s2>86962 Futuroscope-Chasseneuil</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Poitou-Charentes</region>
<settlement type="city">Futuroscope-Chasseneuil</settlement>
</placeName>
<orgName type="university">Université de Poitiers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Patriarche, G" uniqKey="Patriarche G">G. Patriarche</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, Route de Nozay</s1>
<s2>91 460 Marcoussis</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>91 460 Marcoussis</wicri:noRegion>
<wicri:noRegion>Route de Nozay</wicri:noRegion>
<wicri:noRegion>91 460 Marcoussis</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0011305</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 05-0011305 INIST</idno>
<idno type="RBID">Pascal:05-0011305</idno>
<idno type="wicri:Area/Main/Corpus">00AB21</idno>
<idno type="wicri:Area/Main/Repository">00CD76</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0960-8974</idno>
<title level="j" type="abbreviated">Prog. cryst. growth charact. mater.</title>
<title level="j" type="main">Progress in crystal growth and characterization of materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Binary compounds</term>
<term>Experimental study</term>
<term>Fractures</term>
<term>Gallium arsenides</term>
<term>Heterostructures</term>
<term>III-V semiconductors</term>
<term>Indentation</term>
<term>Indium arsenides</term>
<term>Mechanical strength</term>
<term>Microhardness</term>
<term>Monocrystals</term>
<term>Penetration depth</term>
<term>Plastic deformation</term>
<term>Stiffness</term>
<term>Stress effects</term>
<term>Temperature dependence</term>
<term>Ternary compounds</term>
<term>Transmission electron microscopy</term>
<term>Vickers hardness</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Déformation plastique</term>
<term>Résistance mécanique</term>
<term>Effet contrainte</term>
<term>Microdureté</term>
<term>Fracture</term>
<term>Profondeur pénétration</term>
<term>Microscopie électronique transmission</term>
<term>Rigidité</term>
<term>Microscopie force atomique</term>
<term>Dureté Vickers</term>
<term>Dépendance température</term>
<term>Indentation</term>
<term>Hétérostructure</term>
<term>Semiconducteur III-V</term>
<term>Monocristal</term>
<term>Gallium arséniure</term>
<term>Composé binaire</term>
<term>Indium arséniure</term>
<term>Composé ternaire</term>
<term>GaAs</term>
<term>As Ga</term>
<term>InGaAs</term>
<term>As Ga In</term>
<term>6220F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper reviews the plastic behaviour of III-V semiconductors under concentrated load and its implication for optoelectronic-device design. We consider first, fundamental aspects involved into the mechanical resistance to contact loading of semiconductor single crystals (elastic-plastic transition, strain field, hardness-yield relationship...). The paper then describes recent studies of applications aimed at improving the heterostructure quality used in optoelectronic applications and emphasizes the so-called mechanical design (alloying and compliant substructure). Semiconductor technology offers model materials with high crystalline quality while its demand for improving heterostructure quality is a challenge to the Materials Science community. The elastic-plastic transition and subsequent plastic flow under contact loading is complex and has been widely investigated. This is reviewed integrating most recent works made using instrumental nano-indentation that allows monitoring the penetration of a diamond tip as a function of the applied load. Furthermore, this technique allows deformation in the micro- and milli-newton regime so that fracture can be avoided and the first steps of plastic deformation can be investigated. In particular, the determination of the plastic onset and hence the yield strength is possible by investigating the transition between elastic and elastic-plastic regime and measuring the plastic zone size as a function of the applied load. Results for various III-V semiconductors are reported. On the other hand, the performance of heterostructures is directly dependent on the density of dislocations that relax the lattice mismatch between- the substrate and the layers. Nano-indentation allows for a better understanding of the plastic deformations in such structures and opens practical routes to improve the devices. For instance, to avoid the generation of threading dislocations, compliant substructures are now developed in order to concentrate the plastic relaxation underneath the heterostructure. Nano-indentation tests on such structures are reported and the results show that the yield strength of the substrate can be reduced using a compliant substructure. In fact, mechanical design of optoelectronic devices should be considered throughout the fabrication process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0960-8974</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. cryst. growth charact. mater.</s0>
</fA03>
<fA05>
<s2>47</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Plastic deformation of III-V semiconductors under concentrated load</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LE BOURHIS (E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PATRIARCHE (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Université de Poitiers, Laboratoire de Métallurgie Physique, UMR 6630 CNRS, SP2MI-Téléport 2-Bd Marie et Pierre Curie, BP 30179</s1>
<s2>86962 Futuroscope-Chasseneuil</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Photonique et de Nanostructures, UPR 20 CNRS, Route de Nozay</s1>
<s2>91 460 Marcoussis</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1-43</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17542</s2>
<s5>354000120529410010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>82 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0011305</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in crystal growth and characterization of materials</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The paper reviews the plastic behaviour of III-V semiconductors under concentrated load and its implication for optoelectronic-device design. We consider first, fundamental aspects involved into the mechanical resistance to contact loading of semiconductor single crystals (elastic-plastic transition, strain field, hardness-yield relationship...). The paper then describes recent studies of applications aimed at improving the heterostructure quality used in optoelectronic applications and emphasizes the so-called mechanical design (alloying and compliant substructure). Semiconductor technology offers model materials with high crystalline quality while its demand for improving heterostructure quality is a challenge to the Materials Science community. The elastic-plastic transition and subsequent plastic flow under contact loading is complex and has been widely investigated. This is reviewed integrating most recent works made using instrumental nano-indentation that allows monitoring the penetration of a diamond tip as a function of the applied load. Furthermore, this technique allows deformation in the micro- and milli-newton regime so that fracture can be avoided and the first steps of plastic deformation can be investigated. In particular, the determination of the plastic onset and hence the yield strength is possible by investigating the transition between elastic and elastic-plastic regime and measuring the plastic zone size as a function of the applied load. Results for various III-V semiconductors are reported. On the other hand, the performance of heterostructures is directly dependent on the density of dislocations that relax the lattice mismatch between- the substrate and the layers. Nano-indentation allows for a better understanding of the plastic deformations in such structures and opens practical routes to improve the devices. For instance, to avoid the generation of threading dislocations, compliant substructures are now developed in order to concentrate the plastic relaxation underneath the heterostructure. Nano-indentation tests on such structures are reported and the results show that the yield strength of the substrate can be reduced using a compliant substructure. In fact, mechanical design of optoelectronic devices should be considered throughout the fabrication process.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Déformation plastique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Plastic deformation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Résistance mécanique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Mechanical strength</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microdureté</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Microhardness</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Fracture</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Fractures</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Profondeur pénétration</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Penetration depth</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Rigidité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Stiffness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Rigidez</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dureté Vickers</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Vickers hardness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indentation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indentation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>6220F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>004</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00CD76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00CD76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:05-0011305
   |texte=   Plastic deformation of III-V semiconductors under concentrated load
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024